AI无线通信
当今大规模无线通信系统面临着天线阵列扩增所带来的高维信道状态信息(CSI)的传输挑战。随着 6G 系统天线数量增长,高维信道信息维数大幅扩增,需要先在发射端进行压缩再反馈,以减少传输开销,之后在接收端进行解压和重建,恢复原始的高维信道信息。信道状态信息体现信道特性,可以被看作是高维低秩的图像,信道状态信息压缩反馈重建的问题则可以被转化为高维低秩图像的压缩与重建问题。
近年来,人工智能 (AI) 在无线通信领域显示出巨大潜力。AI 辅助的高维 CSI 压缩与重建模型已经超越许多传统算法,取得了非常好的性能。但系统在实际应用中往往面临丰富且复杂的信道场景,且目前大部分 AI 模型只能适用于单一场景的信道信息,对于多场景信道信息适应能力较差。如何提升智能压缩反馈网络对复杂多场景 CSI 的适应性是目前的痛点和难点之一。
该赛题面向真实多场景通信需求,以海量复杂多场景数据为驱动,充分挖掘 AI 的无限潜力,寻找出高效适用于多种场景 CSI 的智能压缩反馈重建模型,赋予智能通信系统灵活性和通用性,有望解决现有智能通信方法的局限,引领未来智能通信系统的前沿研究。
主办单位:
深圳市人民政府、鹏城实验室(PCNL)
承办单位:
深圳市科技创新委员会、新一代人工智能产业技术创新战略联盟(AITISA)
协办单位:
星河集团、华为技术有限公司、平安科技(深圳)有限公司、中国电信